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Abstract-The scattering of elastic waves from cracks is a field of study which has a number of
important applications in nondestructive testing (NOT) and characterization of materials. So far
most theoretical studies have concerned smooth cracks, There is reason to believe that the influence
of roughness will scatter the energy in a more diffuse way, thus complicating the interpretation of
test results.

The problem considered here is the scattering of anti-plane waves, i.e, "horizontally" polarized
shear waves, from a crack in an otherwise homogeneous, isotropic. elastic solid. The geometry is
taken to be two-dimensional, and the scatterer is a curved volumetric crack with a small random
roughness, which is characterized by the RMS height and a correlation length which is related to
the average distance between the peaks of the irregularities. The term "volumetric" refers to the
fact that the crack surfaces are slightly separated, Effects due to overall curvature as well as effects
due to surface roughness and separation of the crack surfaces are thus included in the analysis.

The method of solution can be described as an extension of the null field approach where
certain matrix elements are expanded in terms of a small parameter describing the deviation from
the smooth. nonvolumetric crack. The ensemble averaged amplitude of the scattered field for an
incident plane wave has been computed numerically. Some results are given for various values of
the frequency. the RMS height. the correlation length and the maximum gap between the crack
surfaces. Copyright :{:' 1996 Elsevier Science Ltd

INTRODUCTION

Scattering of waves from various types offtaws (cracks, voids, etc.) in an elastic medium is
an area of great interest in a number of practical applications, e.g. nondestructive evalu­
ation. So far, most studies of scattering from cracks have been concerned with smooth
surfaces, but it is a well-known fact that the surfaces of most real cracks are more or less
rough. The scattering properties are believed to be affected by roughness in the sense that
the energy will be scattered in a more diffuse way. According to Ogilvy (1991) scattering
from random rough surfaces has been the subject of several books and an "uncountably"
large number of research papers. Consequently, it is not possible to give a detailed review
of the field here. The reader is referred to the text-book by Ogilvy (1991) for a general
overview and further references.

Even though there are numerous papers on scattering from rough surfaces the problem
of scattering from rough cracks does not seem to have received so much attention. Some
works that may be of interest in this context are the papers by Lewis (1990), Ogilvy and
Culverwell (1991) and Bostrom et al. (1994).

In this paper the null field approach is used to solve a two-dimensional problem of
scattering from a rough curved crack. The null field approach was originally developed by
Waterman (1965) for electromagnetic scattering but has since been extended to acoustic,
Waterman (1969), and elastic wave scattering (Pao and Varatharajulu, 1976; Waterman,
1976, 1978). The method was adapted to scattering from smooth cracks in an elastic
medium by Bostrom and Olsson (1987) and further developed by Bostrom et al. (1994) to
take the effects of roughness into account.

Normally, when scattering from cracks is considered the volume of the crack is
neglected, i.e. the surfaces of the crack are assumed to coincide exactly. For a rough crack
this is of course an approximation since we cannot expect the rough surfaces to match
completely. In this paper we modify the approach by Bostrom et al. (1994) to take such
"volumetric" effects into account. Geometrically similar problems for the scattering of
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Fig. 1. The geometry of the crack. C+ and C _ are the boundaries of the two-dimensional crack; Cw
is a fictitious curve that is added to form two closed curves C _+ Cwand C. +Cwo IX is the angle of

incidence of the plane wave.

electromagnetic waves have been treated by Zheng and Strom (1989) using the null field
approach.

FORMULATION OF THE PROBLEM AND NULL FIELD SOLUTION

We consider an ensemble of two-dimensional flaws, one of which is shown in Fig. 1
and an incident plane wave in an otherwise linearly elastic, isotropic, homogeneous medium
of density p and shear modulus p.. The boundary of an individual flaw consists of two
distinct portions, C+ and C_, which both deviate slightly from a circular arc of radius a
and central angle 2qJo.

It is assumed that C+ is located outside the arc and C_ inside it, i.e.

r = {a + h+ ( qJ)
a-h. (qJ)

onC+

onC
(I)

where 0 ~ h±(qJ) « a, for each flaw of the ensemble. Hence, the flaw is not a mathematical
crack but has a certain volume. We also assume that the flaw exhibits random surface
roughness, the properties of which will be discussed in the following section. The average
shape of the surfaces is described by the ensemble averages of the functions h±(qJ). These
are denoted by <h±(qJ) =f±(qJ) «a and are discussed in the next section. The small-scale
roughness is described by two functions IJ +(qJ) and IJ _(qJ), so that

(2)

Our purpose is to determine the ensemble averaged scattered field given an arbitrary
incident field. In particular, we are interested in the volumetric effects and the influence of
surface roughness.

The incident wave is taken as a horizontally polarized, two-dimensional plane shear
wave, i.e. the displacement u(r, t) is perpendicular to the plane of propagation, the rqJ-plane
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of Fig. 1. We assume time harmonic conditions with an angular frequency w. Suppressing
a factor exp( - iwt) throughout we denote the incident, scattered and total displacement
fields by ui(r), uSer) and u(r), respectively. Here, u = ul+ us. The elastodynamic equation of
motion then reduces to Helmholtz' equation,

(3)

Here the wave number k = wlc, where c = ~ IIIp is the speed of shear waves.
To solve the problem we use the null field approach following Bostrom et at. (1994)

with some modifications to account for the fact that the surfaces C+ and C_ do not
coincide. The basic idea is to add a fictitious curve Cw as shown in Fig. 1. In this case Cw is
taken to be a circular arc of radius a. Starting from eqn (3) we can easily derive the following
integral representations:

. r [ aG(r r') au(r)] {u(r')
ul(r') + Jc++c

w

u(r) a~ -G(r,r')& dC = 0

-f [ aG(r, r') _ ,au(r)] _ {u(r')
u(r) a G(r, r) a dC -

C_+C
w

,n ,n 0

r' outsideC~+Cw

r' inside C+ + Cw

r' inside C _ + Cw

r' outside C _ + Cw

(4a)

(4b)

where G(r, r') is the free space Green function.
Utilizing the general solution to eqn (3) in polar coordinates we define two sets of

basis functions. Firstly, we introduce a set of regular functions Re Xn = ~Jn(kr) eImP
, where

In(kr) is the cylindrical Bessel function which has the property of being bounded at the
origin. Secondly, we define a set of basis functions Xn = ~Hn(kr) eifUP corresponding to
outgoing waves. Here, Hn(kr) is the cylindrical Hankel function of the first kind. The
incident field d and the scattered field US can now be expanded as follows:

X-

ul = L an ReXn (5a)
n= -x

ex.

US = L J:Xn' (5b)
n= -x

The expansion (5b) is valid everywhere outside the circumscribed circle of C+ +Cw '

Expanding the free space Green function G(r, r') we obtain

(6)

where Rex:= ~Jn(kr)exp(-imp)and X:= ~Hn(kr)exp(-imp). If r < r', then r< = rand
r> = r' and otherwise the other way around.

Substituting into eqns (4) we obtain

_'f (a Re x: *au)0-1 . u-
l
- -ReXn;;- de.

c_ +C
w

en un

The displacement field on C _ + Cw is expanded in regular basis functions,

(7a)

(7b)

(7c)
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u = I 'XII Re Xn-
/I

(8)

Following Bostrom and Olsson (1987) we introduce an auxiliary field v(ep) in order to avoid
the singularity of the traction at the crack tips:

(9)

epo < ep < 2n-epo.

Here. u+ and u_ are the displacement fields on C+ and C_. respectively. and twdenotes the
traction at the fictitious surface Cwo The function Z(ep) is chosen so that v(ep) is continuous.
In the following section. where the surface roughness is considered, we assume that the
tangents of C+ and C_ coincide with the tangent of Cwat the crack tips. This assumption
simplifies the conditions to be fulfilled at ep = ± epo considerably. Hence, the expression for
Z(ep) used by Bostrom et al. (1994) simplifies to

- epo < ep < epo

(10)
epo < ep < 27[- epo·

It should be noted that Z(ep) can always be multiplied by an arbitrary function of ep without
affecting the continuity of v(ep). Expanding v(ep) in terms of trigonometric functions we
obtain:

(II)

Summing up we have the following boundary conditions:

cu
u = I 'XII Re XII +Z I f311 el//<P - = 0en

On C _: u = I 'XII Re XII

eu 0 ReXII-,:;- = I 'XII ~,~- = kZ I f311 eill<P
en II on II

where we have utilized that the traction is zero on C+ and C_.
Substituting into eqns (7) we obtain

~ikIf311 r Ze"1 <P Rex:dC (12a)
n Je...
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", I eRe x: 'I' "0= 1 L. rt.n Re Xn" -~-,- dC - ik L. f3n, Z e,n <P Re X:dC
n' c_ +c" en n' e\l,

3467

(12b)

(12c)

where eqn (12b) has been rewritten using a Betti identity. Equations (12) can be expressed
in matrix notation as

f = iPa:+i Re RP-iSP

a = a:-iUa:-iRP+iVa:

0= Qa:-SP

(13a)

(13b)

(13c)

where f, a, a: and Pare column vectors corresponding to the coefficients im ... , f3" and the
elements of the matrices are defined as follows:

Pnn , I 3 Rex: (14a)= ReXn,--dC
c, +c, en

Qnn I 3 Rex: (14b)= ReXn-~-dC
c_+c, en

I ,,3Rex*ReRnn = Zein 4' ___ndC (14c)
C en

+

I ax*Rnn , = Zein <P--.:;-"dC (14d)
C On

+

Snn' =kI ZeIn<P Rex: dC (14e)
CW

Un/, I ax: (14f)= Re Xn' -~- dC
enc.

Vnn =fc ax:
(14g)ReXn-~-dC.

en

Eliminating a: and Pfrom eqns (13) we obtain a relation between the incident field and the
scattered field:

where

and

f= Ta

W =(I+iV -iU)Q-I S-iR.

(15)

(16)

(17)

The T matrix (transition matrix) contains all relevant properties of the scatterer, i.e. given
any incident field a it is possible to compute the scattered field f.
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For the case of deterministic curves, C+ and C~, the T matrix can be computed using
eqns (16), (17) and (14). In the present case, however, the matrix elements of eqns (14)
cannot be computed, except for Snn" due to the random behaviour of the surface roughness.
Instead we proceed to compute an ensemble average of the scattered field. To do this we
have to make some additional assumptions regarding the properties of the surfaces.

STATISTICAL DESCRIPTION OF THE SURFACES

According to eqn (2) the surfaces C± are described by the functions
h±(cp) = I±(cp) + '1 ±(cp), where I±(cp) = (h±(cp) are ensemble averages. These can be pre­
scribed more or less arbitrarily as long as the functions are nonnegative and approach zero
at the crack tips. Here we have chosen the functions

, ncp1+ (cp) = wcos--
2- CPo

(18)

where e « 1. In other words, 2ea is the average gap width at the centre of the crack. This
choice of Ic::. (cp) has the advantage that the average of curves C ± approach the fictitious
surface Cw so that the slope is continuous, which simplifies the analysis considerably. In
fact, our definition of the function Z(cp), see eqn (10), assumes that not only the ensemble
averages/±(cp) = <h±(cp) but also the functions h±(cp) satisfy this condition.

Our purpose is to study an ensemble of rough scatterers with identical statistical
properties in order to calculate the ensemble average of the scattered field
US = 'L/"Xn = 'LTnn·anXn. The roughness is described by the functions '1±(cp), where
<'1 ±(cp) = O. We assume that '1 ±(cp) are continuously differentiable functions on the inter­
val - CPo < cp < CPo. It turns out that we need expressions for the ensemble averages of
'1'± (cp), '1 ±(cp)YJ:'::. (cp'), '1'± (cp)YJ ±(cp') and r(± (cp )YJ'± (cp'). Furthermore, we need expressions for
<'1 + (cp)'1 ~ (cp') and its derivatives.

It is easily seen that <'1'±(cp) = O. For the correlation functions <YJ±(CP)'1±(cp') we
have to make some assumptions. Several models have been proposed [see Ogilvy (1991)
for a detailed review of the literature]. In most cases a stationary model is used meaning
that any statistical properties involving two points on the surface depend only on the
relative positions of these points, i.e. <'1+(CP)'1+(cp') = g+(cp_cpl), where g+(cp-cp') are
some suitably chosen functions, e.g. g:'::. (cp - cp--;) ex exp [~a2(cp - cp')2 /2).;]. Here, )'e is a
correlation length which is related to the average distance between two consecutive peaks
on the surface. However, in the present case the stationary model has the unpleasant
property that ([r(±cpo)-af) =1= 0, i.e. that the curves C+ and C_ may be overlapping in
the neighbourhood of the crack tips. To avoid this difficulty we prescribe a nonstationary
roughness such that

(19)

where (J can be interpreted as a local RMS value of the height of the irregularities. Since
we only consider slightly rough surfaces we assume that (J« 1. Obviously,
<h±(± CPO)2) = <YJ±(± CPO)2) = 0 and, consequently, <[r( ± CPo) - af) = 0 or r( ± CPo) = a, as
desired. Furthermore, d± CPo) = 0, i.e. the tangents ofC+ and C_ coincide with the tangent
of Cw at the crack tips for each individual crack of the ensemble. This property has already
been utilized when the function Z(cp) was defined, see eqn (10).

The main reason for choosing the factor exp {( - a2 /1.;)[1 - cos(cp - cp')]} in eqn (19),
rather than the ordinary Gaussian correlation function, is that it is periodic on the interval
[0, 2n]. Thus it can be expanded in a Fourier series in a very attractive way:
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exp {- ~: [I-COS(CP-<f/)]} = L,s"e>n{W-'P')
Ac n

where the coefficients Sn are given by

3469

(20)

(21)

Here, In(x) = i-nln(x) is a modified Bessel function of the first kind.
It should also be noted that there is no significant numerical difference between the

Gaussian and the periodic correlation functions for the values of Ac/a that are considered
here.

The expressions for <rt':t (cp)'1 ±(cp'). <'1 ±(cp )'1'± (cp') and <'1'± (cp )'1'± (cp') are obtained
from eqn (19) by differentiation.

The proposed correlation function, eqn (19). implies that both surfaces have identical
statistical properties, in particular the same values of (J and Ac . There is no fundamental
difficulty involved in handling two surfaces with different values of (J and/or )'0 but the
calculations will become considerably lengthier and much more cumbersome to carry out.
Since there does not seem to be any physical justification for taking this possibility into
account we have refrained from doing so.

We also assume that <'1 + (cp )'1- (cp') == 0, i.e. the surfaces are totally uncorrelated. This
is an assumption that is open to criticism. It is reasonable to believe that the kind of
mechanism that has created the crack determines to what extent the surfaces are correlated.
It can be shown that the extreme case where <'1+(CP)'1-(cp') ) = <'1± (cp)'1± (cp') leads to
analytical results that are rather similar to those obtained for the uncorrelated case.
However, no numerical results are presented here.

If the surfaces are completely uncorrelated we have to require that
h ± (cp) = f± (cp) ±'1 ± (cp) ): 0 for each individual crack to make sure that the curves C + and
C_ do not overlap. This can only be true if (J ~ G.

ENSEMBLE AVERAGED T MATRIX AND THE SCATTERED FIELD

To determine the ensemble averaged T matrix and the corresponding scattered field
we replace r by a±h±(cp) on C+ and C_ in eqns (14). Expanding all matrix elements in
powers of h ± (cp )/a and h'± (cp)/a and substituting into eqn (16) we obtain a series expansion
of the T matrix for each individual crack of the ensemble. Taking the ensemble average
and utilizing eqns (2), (18) and (19), and similar series expansions for
<'1'±(CP)'1±(CP').<'1±(CP)'1'=(CP') and <'1'±CP)'1'±(cp'), we obtain after some rather tedious
calculations the ensemble averaged T matrix on the following form:

Here.

To = iReRoWo
l

(22)

(23a)

T 1 = [(2iP?Qo IS-2 Re RoWo 1U? -i Re RoWo IQo 1P?)Qo IS+i Re R?

- Re RoWo IR?JWo I (23b)

T 20 = {[2iP?Qo Ip? -4P?Qo lSWo IU? -2iP?Q{) ISWo1Qol p?

-2 Re R?W{l IU? -i Re R?Wo1Qo IP? + Re RoWo 1(-4iU?Qo ISWOIU?

+2U?Qo 'SWo IQo IP? +2Qo IP?Qo ISWOIU? +iQo 1p?QolSWo lQo IP?

- 2iR?Wo IU? + R?Wo IQo Ip? - 2U?Qo IP? - iQo 'p?Qo IP?)]Qo IS

- 2P?Qo ISWO-
1R? - Re R?W() 1R? + iRe R2
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+iQo-l P2Qo IS-R2)}WO1

T2 = (L~m{[iPTQo IPim-2PTQo ISW(l 1Vim -iP~'Qo 1SWOIQO IPim
m

+ UrQo ISWO'Qo' Pim+Qo 1P~'QO ISWolVim+iQo IPTQo ISWOlQolpim

- iRTW(l 1Vim - VTQo 1Pim
- iQo 'P~'QO1Pim)]Qo 1S

+ Re RoWo I (-iV7'Qo lSWo
1Ri m-iR7'Wil lRim)}

+i Re R2+ReRoWO-
1(iQo 1P 2Qil IS-R2))Wo-

1

and

(23c)

(23d)

The explicit expressions for the matrices in eqns (23) are given in the appendix.
To calculate the scattered field we note that US = 'LTnn·anXn according to eqns (5b) and

(15). Here an are the expansion coefficients of the incident field u" see eqn (5a). In the case
of an incident plane wave of amplitude Uo and angle of incidence (X as defined in Fig. I we
have an = 2uoi

ne- in
,. Thus, US = uo'LTnnYHn(kr) el(mP nXl. The far field is obtained by replac­

ing Hn(kr) by its asymptotic expression (2/nkr)12 exp [i(kr-nn/2-n/4)]. The result is that
the scattered field is obtained as a series expansion:

eikr

US = Un --as(({J)
(kr) , 2

where

is a dimensionless far field amplitude.

NUMERICAL RESULTS

The scattered field far away from the crack is calculated numerically from eqn (24)
using eqns (23) and the matrix elements from the appendix. Results are obtained for various
values of the frequency, the angle of incidence, the average central gap width 2e, the RMS
height (J and the correlation length I.e- In all cases the central angle of the crack 2({Jo is taken
to be 60;.

In Figs 2(a-e) the magnitude of the far field amplitude, as defined in eqn (24), is plotted
against the scattering angle for three different frequencies, ka = 1,5 and 10, respectively, and
for various values of e, (J and ;'e' The angle of incidence is rJ. = 90° in all cases. In Figs 3(a­
c) the corresponding results for (X = 45' are shown. The back-scattered field is obtained by
taking ({J = (X + n in eqn (24). Some results are shown in Figs 4(a-e). Where the effects of
roughness are hardly visible we have chosen to show the volumetric effects only.

One obvious conclusion is that the effects of roughness in general are small compared
to the volumetric effects. These, on the other hand, can be of considerable importance,
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Fig. 2. (a) Polar plot of the scattered far field amplitude versus the scattering angle for rx = 90 .
ka = 1, i.cla = 0.1, and for t: = (J = a (--). t: = 0.02. (J = a (-.-.-). I: = 0.05. (J = a (...... ).
£ = (J = 0.05 (----). (b) Polar plot of the scattered far field amplitude versus the scattering angle for
rx = 90. ka = 5. i'cla = 0.1. and for c = (J = 0 (--), I: = 0.05. (J = 0( ...... ). f, = (J = 0.05 (----).
I: = 0.1. (J = a (- .-.-). (c) Polar plot of the scattered far field amplitude versus the scattering angle
for rx = 90. ka = 10, i.,la = 0.05. and for /; = (J = 0 (--). c = 0.02. (J = 0 (- ..... ). f = (J = 0.02

(----). f. = 0.05. (J = a(-. - -).

especially for certain angles of incidence. In Figs 2 and 4 it is also possible to study the
effects of overall curvature, which is responsible for the asymmetries with respect to the
horizontal axis. According to Ogilvy (1991) the effect of nonplanar reference surfaces are
among the unsolved questions of scattering from rough surfaces.
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Fig. 3. (a) Polar plot of the scattered far field amplitude versus the scattering angle for :J( = 450,
ka = I, and for E = (J = 0 (--). E = 0.02, (J = 0 (...... ), E = 0.05, (J = 0 (----). (b) Polar plot of
the scattered far field amplitude versus the scattering angle for:J( = 45, ka = 5, Acla = 0.1, and for
E = (J = 0 (--), E = 0.05, (J = 0 (...... ), E = (J = 0.05 (----), E = 0.1, (J = 0 (-- -- -). (c) Polar plot
of the scattered far field amplitude versus the scattering angle for:J( = 45", ka = 10, and for E = (J = 0

(-), E = 0.02, (J = 0 (- ..... ), E = 0.05, (J = 0 (-----).
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Fig. 4. (a) Polar plot of the back-scattered far field amplitude versus the angle of incidence for
ka = I, and for £ = a = 0 (--), £ = 0.1, a = 0 (...... ), 8 = 0.2, a = 0 (----). (b) Polar plot of the
back-scattered far field amplitude versus the angle of incidence for ka = 5, and for E = a = 0 (--),
£ = 0.04. a = 0 C.. ·.. ), E = 0.1, a = 0 (----). (c) Polar plot of the back-scattered far field amplitude
versus the angle of incidence for ka = 10, and for £ = a = 0 (--), £ = 0.02, a = 0 (...... ), E = 0.05,

a = 0 (----).

The results are valid only as long as certain parameters are small. When the matrix
elements of eqns (14) are calculated, In{kr) and Hn{kr) are expanded in Taylor series around
r = a. Hence, kah± must be small, i.e. the condition B+a« l/ka must be fulfilled. This
means that the deviation from the circular arc must be small compared to the wavelength.
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Furthermore, the RMS height must be small compared to the correlation length, i.e. (J « Ac .

This restriction is less obvious from the analysis but is well-known from the literature, see
Ogilvy (1991). A numerical check on this condition was performed by Jansson (1993) by
calculating fourth-order elements of the T matrix. For obvious reasons no such attempt
has been made here.

In the numerical results presented above we have a rather liberal view on the meaning
of the term "small". The main reason for this is that the effect of roughness is hardly
noticeable otherwise. Even if the results are not quantitatively correct they are believed to
predict the tendency when the values of the so-called small parameters sand (J are increased.

The matrices T(j, T 1 and T20 have been checked for symmetry and hermiticity. The
symmetry condition follows from the fact that the system must be invariant under a
change of direction of time, while hermiticity is a consequence of energy conservation. The
conditions that must be fulfilled are

T+T*+2T*T = o.

(25)

(26)

Expanding eqns (25) and (26) in powers of s we obtain conditions that can be used for a
numerical check of To, T 1 and T 20 • However, the hermiticity condition can only be used for
the deterministic part of the T matrix since the ensemble average of the nonlinear term
2T*T is never calculated. In fact, we do not even calculate the ensembled averaged matrix
T2 due to the storage problem caused by the matrices with three indices, e.g. PT. Instead
we calculate T 2a immediately.

In all cases the indices nand m of eqns (nd) and (24) run from - 80 to 80 and from
-40 to 40, respectively, to ensure convergence. The symmetry and hermiticity tests indicate
that nmax = 80 is more than sufficient. Increasing mmax above 40 does not result in any
significant change.

CONCLUDING REMARKS

In the present paper the scattering from a rough volumetric crack is studied by the use
of an analytical ensemble averaging technique. Obviously, the effect of roughness is more
or less negligible compared to the volumetric effect. This observation is not particularly
surprising considering the fact that the latter effect is of first order while roughness is a
second-order effect as long as only ensemble averages are considered. Roughness may, of
course, have a significant effect on the scattering properties of an individual crack of the
ensemble. With the present method, however, it is not possible to make any predictions of
these. Since the response from one specific crack is of interest in ultrasonic testing rather
than an ensemble average of the response from several cracks, it seems reasonable to suggest
a different approach to the study of scattering from cracks. One possible way could be to
generate a number of randomly rough surfaces with equal statistical properties by some
kind of numerical simulation and study the scattered field from each individual crack, for
instance by using the method of the present work. Jansson (1995) has modelled a rough
penny-shaped crack as a superposition of a finite number of doubly corrugated surfaces
which are randomly translated and rotated with respect to each other. It seems likely that
a similar model in combination with the approach of the present paper will give useful
results.

Despite the above objection to the practical usefulness of the quantitative results
presented here, the method should be useful in studying the influence of properties like
roughness and the shape of the reference surfaces. At least in principle, it should be possible
to replace the circular arc by another curve. There are certain restrictions to the null field
approach, however, and in any case it will probably not be possible to reach this far by
analytical calculations. Even if the circular arc is retained we can study different shapes of
the reference surfaces by choosing another functionf( cp) in eqn (18). This may lead to more
complicated computations, for instance it may be necessary to calculate the matrix elements
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of eqns (A Id-h) by numerical integration, but otherwise the procedure should be straight­
forward. The correlation function defined in eqn (19) may be changed, for instance by
replacing the (almost) Gaussian factor by any of the various correlation functions that
have been suggested [see Ogilvy (1991)]. This is equivalent to changing the coefficients C
ofeqn (21).

There are several other possible extensions of the present work. The possibility of
studying a number of simulated deterministic surfaces, thus taking first-order roughness
effects into account, has already been mentioned. Other possibilities include the scattering
of P and SV waves, i.e. compressional waves and shear waves polarized in the plane of
propagation, and the three-dimensional problem, of course. However, the analytical and
numerical effort required in the three-dimensional case will most likely be of a completely
different dimension.
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APPENDIX

In eqns (23) the T matrix is expressed in terms of various matrices, the elements of which are given here.

[QI; I].", = [2;nkaJ"(ka)J;,(ka)],)",,

I

r
~ (k)J 'H'(k )~[(n'-n)fIl"]
2 !Po a n a n'-n

1~fIl~(ka)' 'H;,(ka)

n "" n'

n =n'

(Ala)

(Alb)

n -----
[S]"" = 4vkafllo(n-fIl")( -I)" "J,,(ka)J,,[(n' -n)(1l-fIl,,)]

[P';'J"" =p""F1(n'-n+m)

(A Ie)

(AId)

[R'rlnn
1l

= (r,,-ms,,)F,(n' -n+m) - -s"F,(n' -n+m)
fIl"

[L';']"" = u,,,,F,(n'-n+m)

(Ale)

(Alf)

[P,]"" = ~(ka)'[ kaJ;;' (ka)J" (ka) + 2J;;(ka)[J" (ka) + kaJ;, (ka)] + J;(ka)[2J;,(ka) + kaJ~(ka)]} F4 (n' - n)

nn
+ -4 [J"(ka)[J,, (ka) -kaJ;, (ka)] -kaJ;,(ka)J" (ka) }F;(n' -n) (Alg)

fIlo

n
[R,]"" = ±(ka)5 '[kaH:'(ka) + 2H;;(ka)]F,(n' - n) - ~~-(ka)' 2n[kaH;,(ka) - H,,(ka)]F7 (n' -n) (A Ih)

....<p()

where
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Pm' = Hka[kaJ;;(ka)Jn(ka) +J;(ka)Jn(ka) + kaJ;(ka)J;(ka)] + 11(11' ~11)Jn(ka)Jn(ka))

rn = ~(ka)' 2 [kaH~(ka)+ H;,(ka)]

s" = ~(ka)' 'I1H,,(ka)

Un" = Hka[kaH~(ka)Jn(ka) + H;,(ka)Jn(ka) + kaH;,(ka)J;(ka)] + /1(11' - I1)Hn(ka)J,,(ka))

and

11' sin(l14'o)
F, (11) = 11 # 0.11 # ± 11/4'0

11(11' - 11' 4'~)

F, (0) = 4'0

F, (± 11/4'0) = 4'0/2

) 11 [2J'(114'0) J,(11-I14'O) J,(11+I14'o)J
F,(11 =-44'0 ---+4'0 +4'0 11#0.11# ±1114'0

11 11-114'0 11+114'0

F4(11)=~[~+ 411 _ 11 JSin(l14'o)
11 (1114'0)' -11' (21114'0)' -11'

F 4 (0) = ~4'o

F4 (± 11/4'0) = ~4'0

F4 (±21114'0) = ~4'0

F,(n)=~[. 1_ I JSin(I14'II)
24'11 (21114'11)' -/1' (11/4'11)' -11'

F,( ± 11/4'0) = + ~4'n

Fs( ±21114'o) = + ~4'0

11 ,[6J.(I14'0) 4J,(11~114'0) 4J,(11+114'0) J,(211-114'0) J,(211+I14'II)J
F, (11) = - 4'0 --- + + + -- + ~--'----

16 114'0 11 - 114'0 11 + /1(1'0 211 - 114'0 211 + 114'11

F 6 (0) = ~4'~[311+8J,(11)+J,(211)1

F,(±1114'1I) = d,4'~[611+2lJ I (11) +6J, (211) +J .(311)]

Fo{ ± 211/4'0) = tk4'~[611+ 48J, (11) + 36J, (211)+ 16J, (311)+ 3J, (411)]

11 ,[21,(11+114'0) 2J,(11-114'0) J.(211-114'0) J,(211+114'0)J
F 7 (11) = - 4'0 - - + '------'--"-'-

16 11+114'0 11-114'0 211-114'0 211+114'0

F7 (± 1114'0) = ±d,4'W-311- 3J .(11)+ 3J, (211) +J, (311)]

F,(±211/4',,) = ±";'4'~[-611-24J,(11)+8J,(311)+3J,(411)].

The elements of the matrices Re Ro• Re R~' and Re R, are obtained by replacing H n and its derivatives by Jm etc.
in the expressions for Ro• R~' and R,. respectively.


